
A Composite Statistical Test for Detecting 
Changes of Steady States 

A stat is t ical  p r o c e d u r e  for determining whether  p r o c e s s  var iab les  
h a v e  undergone  a c h a n g e  of s t e a d y  s t a t e s  is d e v e l o p e d  by using a com- 
p o s i t e  s ta t is t ical  t e s t .  F a c t o r s  influencing t h e  p o w e r  of t h e  t e s t  a n d  t h e  
probability of T y p e  I errors were s tudied  through theore t ica l  ana lys i s ,  
computer  simulation, a n d  appl icat ion t o  plant d a t a .  They  include t h e  
number of variables to be t e s t e d  t o g e t h e r ,  t h e  number of m e a s u r e m e n t s  
u s e d  in t ime averaging ,  t h e  levels of significance of t h e  t e s t s ,  a n d  t h e  
appropr ia te  formulation of t h e  h y p o t h e s e s .  T h e  p r o c e d u r e  d e v e l o p e d  
h e r e  is useful in p r o c e s s  d a t a  reconciliation a n d  in appl ica t ions  t h a t  
require an analys is  of process trends. 
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Introduction 
Steady state is one of the most important and common 

assumptions made about a process. Depending on whether this 
assumption is made, an entirely different treatment of the pro- 
cess may follow. Much of the pilot plant data for process model- 
ing and process design is collected when steady state conditions 
are attained. Preliminary data are taken only for the purpose of 
ascertaining the state of the operating conditions. Likewise, pro- 
cess data for plant material and energy balances and yield 
accounting are normally taken under presumed conditions of 
steady state. 

On the other hand, in some applications changes of process 
conditions are the very essence of the analysis. Process dynamics 
is obviously central to process control applications. But the 
detection of steady states can also be useful in historical data 
recording. Hale and Sellars (1981) have proposed and imple- 
mented various heuristic algorithms for data compression to 
reduce the storage required for process data without losing trend 
information about the process behavior. In data compression 
schemes, data are recorded only when their numerical values 
undergo significant changes. In their schemes the magnitude of 
significant changes are prespecified. But detection of a change 
of steady states could provide an alternative procedure that 
takes into account the variability in the data in determining 
when the changes are significant. 

In process data reconciliation and estimation the treatment is 
different depending on whether steady state conditions are 
assumed. For steady state processes the estimation procedure 

Correspondence concerning this paper should be addressed to R. S. H. Mah 

(Mah, 1982; Tamhane and Mah, 1985) take no account of past 
data. But for quasi-steady state processes the stirnation tech- 
nique utilizes past data as well as steady state material and 
energy conservation constraints (Stanley and Mah, 1977). 

In all of the foregoing applications it is important to be able to 
determine whether a process is in a steady state. In a strict sense 
steady state conditions almost never prevail in practice. A judg- 
ment is made by the process engineer or operator as  to when a 
steady state is supposedly attained. Previous work in this area 
has been limited. In this paper we propose a statistical procedure 
for determining if a change of steady states has occurred. 

In our investigation a change in steady state is considered to 
take place if  one or more of the true values of the measured pro- 
cess variables undergo a change. Notice that in this model the 
variability in the measurements as given by the measurement 
error covariance matrix may change without affecting a change 
of steady states. A combination of multivariate statistical tests is 
used to detect changes in the state of the variables using mea- 
surements on these variables. The variables are grouped 
together based on the knowledge that they are physically related 
and on the expectation that they are likely to change their states 
together. The measurements are assumed to be sampled a t  regu- 
lar time intervals. A set of N successive measurement vectors 
constitutes a period, and N is referred to as the period size. It is 
assumed that a change of steady states may occur from one 
period to the next, but that within each period the process is in a 
steady state. The tests are based on sample statistics computed 
for each time period. 

Computer simulation, theoretical analysis, and application to 
plant data are used to arrive at the following main conclusions of 
this study: The method proposed appears to provide a practica- 
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ble approach for detecting changes in steady states. Application 
to plant data indicates that the test should be formulated such 
that only when the combined change of the true values of the 
variables exceeds a prespecified threshold amount, should a 
change of steady states be assumed to take place. Selection of 
the variables to be tested together is an important consideration. 
The power of the composite test to detect a change in the state of 
the variables increases as we increase the number of variables to 
be tested together, provided these variables change their states 
simultaneously. The strategy of application of the test depends 
on how the process is expected to change states. The strategy 
proposed in this study is intended for quasi-steady state pro- 
cesses (Stanley and Mah, 1977). 

Model and Assumptions 
In this study process variables are considered to be in a steady 

state if their true values do not change with time. Our aim is to 
detect changes in the state of the variables given their measure- 
ments. The following assumptions are made in this regard: 

(a) All process variables are measured directly. 
(b) Measurements contain only random errors, which are 

normally distributed with mean c. 
(c) A time period is defined to consist of a set of N successive 

measurement vectors. Within each period the process variables 
are assumed to be steady. 

(d) The covariance matrix of measurement errors is assumed 
to be unknown and is allowed to change from one period to the 
next. 

(e) Successive measurement vectors are assumed to be mu- 
tually independent. 

Using these assumptions, the measurement model can be 
described by 

- u k i  - "(0, Q J  i = I, 2 , .  . . , N 

E[c&jgb] = 2 for all i , j ,  k, 1 with either i # j or k # 1 (3) 

Here the subscript k refers to the kth period, x k  is the vector of 
true values, .&is the ith vector of measurements in the kth peri- 
od, and is the corresponding normally distributed vector of 
random errors with mean 0 and covariance matrix Q&. Thus the 
Zki are independently distributed as 

(4) 

Assumptions (c) and (e) allow us to use the sample covariance 
matrix as an estimate of Qk. The estimate of Qk is more compli- 
cated if steady state conditions are not assumed (Almasy and 
Mah, 1984). 

Test Procedure 
Let us consider consecutive time periods k and k + 1. Let us 

also consider a group of p variables that are chosen to be tested 
simultaneously. The test for a change in the true values of the 
variables has two forms, depending on whether the covariance 
matrices in the two periods are equal. The proposed test proce- 
dure proceeds in two stages. In the first stage we apply a test to 
determine whether the covariance matrices Qk and Qk+1 are 

equal. Depending on the outcome of this test we apply the appro- 
priate test in the second stage to determine whether the true 
vectors E k  and & & + I  are equal. We refer to this two-stage test pro- 
cedure as the composite test. Figure 1 is a schematic representa- 
tion of the composite test. The details of the composite test are 
given in the Appendix. We will refer to the different tests as test 
1, test 2A, and test 2B, as defined in Figure 1. In our application 
we choose the period size to be equal for all periods. We also 
choose the same level of significance a*. for test 2A and test 2B, 
while test 1 is applied using a level of significance aI. 

It is assumed that in practice a subset of the measured vari- 
ables i s  chosen based on the specific application. The composite 
test is applied successively to pairs of consecutive time periods 
for this subset of variables. For example, we apply the composite 
test to this subset for periods 1 and 2, then for periods 2 and 3, 
and so on. This strategy of applying the test is appropriate for a 
quasi-steady state process (Stanley and Mah, 1977), which 
remains essentially a t  a steady state for a long interval of time 
and changes quickly from one steady state to another. To detect 
slow drifts in the variables, other strategies may be used. Such 
alternative strategies are discussed in the final section, Closing 
Remarks. 

Evaluation of the Test Procedure 

quantities: 
The performance of the composite test is characterized by two 

I .  The probability of its Type 1 error 
2. Its power. 
These performance characteristics are defined for each subset 

of variables as follows: 

Pr{Type I error) = P r { H ,  of test 2A or test 2B is rejected when the 
variables in the subset are in a steady state] 

Power = Pr{H, of test 2A or test 2B is rejected when one 
or more variables in the subset have changed 
their states) 

In the above definitions Hoof test 2A or 2B is the hypothesis that 
the variables are in a steady state. Based on these performance 
characteristics we study the effect of the following factors on the 
performance of the composite test: 

The level of significance, a1 of test 1. 
The dimension of the subset p. 
The period size, N .  

I /  

Figure 1. Composite statistical test. 
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It is difficult to obtain values of the probability of Type I error 
or power of the composite test analytically, although for test 2A 
this is possible. We shall therefore use a combination of simula- 
tion and analytical methods to study the effect of the factors 
listed above. First we shall study the effect of aI through com- 
puter simulation. Henceforth, we refer to the performance char- 
acteristics of the composite test simply as the probability of 
Type I error or power, respectively. 

Effect of e, 
The choice of aI affects the behavior of test 1 ,  which may 

affect the performance of the composite test. This effect is 
explained as follows. 

Let us consider consecutive periods, say, periods 1 and 2. Ide- 
ally, if we know that Q, = Q2, we can apply test 2A. Otherwise 
we can apply test 2B. Since test 1 is used to determine whether 
the covariance matrices are equal, there is a probability aI that 
test 2B may be fed with cases for which QI = Q2. Similarly there 
is a probability PI, the probability of type I1 error of test 1, that 
test 2A may be fed with cases for which Ql f Q2. For specified 
values of QI, Q2(QI f Q2), p ,  and N ,  Dl is uniquely determined 
by choosing aI .  Thus, even when QI # Qz, we interpret the effect 
of test 1 as the effect of aI on the performance of the composite 
test. A brief description of the simulation procedure used to 
evaluate the effect of aI follows. A more detailed description is 
given in Narasimhan (1 984). 

For a particular simulation, we choose values for p ,  N ,  aI, a2, 
- Q1, Q2, and the vector of differences, in the true values of the 
variables in the two periods. Given these values, the vector _d 
defined in Eq. A15 and the sample covariance matrices S1 and 
S2 - defined in Eq. A21 are generated on the computer. Efficient 
methods for generating these quantities are described in Nara- 
simhan (1984). The test statistics defined in Eqs. A2 and A14 
are calculated and the composite test is applied. Each such 
application is a simulation trial, and a simulation run consists of 
N7 trials. If NR is the total number of simulation trials rejected 
by test 2A and test 2B, then we calculate the proportion 3 given 
by 

NT 

If in a simulation run S = 0, then this implies that there is no 
change in the true values of variables and therefore we are simu- 
lating an idealized steady state situation. The proportion 3 cal- 
culated for this simulation run is an estimate of the probability 
of Type I error of the composite test. On the other hand if # 0, 
then we are simulating a nonsteady state situation for a magni- 
tude of change S in the true values of the variables. The propor- 
tion 3 calculated for this case is an estimate of the power of the 
composite test. 

The following four simulation runs were used to evaluate the 
effect of a!. 

4. Q1 = L, Q2 = 2.51, S Z 0 
Simulation runs 1 and 2 were used to evaluate the effect of al on 
the probability of Type I error, and simulation runs 3 and 4 were 
used to evaluate the effect of a1 on the power of the composite 

test. In all the simulation runs we used the values of p = 3 and 
N = 30. For each simulation run the composite test was applied 
using two different values of a2 and three different values of aI 
in the range 0.01 to 0.1. The results of the simulation showed 
that for fixed values of p .  N ,  Q1, Q2, a2, and b. the value of aI  in 
the range 0.01 to 0.1 does not significantly affect the probability 
of Type I error or the power of the composite test. Therefore any 
value of aI in this range would be acceptable; we adopt the 
choice of a1 = 0.05 from now on. 

Instead of performing extensive simulations for different 
combinations of Q1, Q2, p ,  and N ,  the effect of other factors p 
and N can be analyzed theoretically by examining their effect 
on test 2A and test 2B. Depending on the values of QI and Q2, 

the following three cases can occur. 
Case I: QI = Qz. For this case, the probability that test 2B will 

be applied is small, since aI is small. Therefore, the overall per- 
formance of the composite test is determined by test 2A. 

Case 2: Ql moderately different from Q2. Both test 2A and 
test 2B influence the performance of the composite test but their 
relative role depends on the power of test 1 .  

Case 3: QI highly different from Q2- The power of test 1 in this 
case is high and therefore the performance of the composite test 
is determined by test 2B. 

Effect of p and N on the probability of Type Z error 
Let all the variables be at steady state. For cases I and 3 

described above, there is a high probability that the correct test 
(test 2A or test 2B) is applied in the second stage and therefore 
the probability of Type I error of the composite test is approxi- 
mately equal to a2. For case 2 it has been shown (Ito and Schull, 
1964) that when the period sizes are equal, as in our case, test 
2A is robust to small differences in Ql and Q2 and gives a proba- 
bility of Type I error approximately equal to a> Moreover, the 
robustness of test 2A is enhanced for larger period sizes. We also 
note that the probability of Type I error of test 2B is always con- 
trolled at  a2. Therefore even for case 2 and hence for all cases, 
the probability of Type I error of the composite test is approxi- 
mately equal to a2, and independent of p ,  N ,  el, or Q2. 

Effect of p on power 
Here we attempt to answer the following question: From a 

given set of variables, how many variables should be chosen and 
tested together so that the power of the test for detecting 
changes in steady states is maximized? We are therefore inter- 
ested in the effect of the dimension of the subset p on the power 
of the test. It is assumed that once a subset ofp variables is chos- 
en, any remaining variables are dismissed from further consid- 
eration. 

The dimension of the subset, p ,  affects the power of the test in 
two counteracting ways. Asp increases, the test criteria Ti,(a2) 
for test 2A and Ti,(a,) for test 2 8  increase, which causes a 
reduction in the power of the composite test. On the other hand, 
the noncentrality parameter defined in Eq. A24 may increase 
with p ,  which causes an increase in the power of the test. The net 
effect on the power is difficult to ascertain if the variables 
change by different extents. However, for the particular case of 
the same relative change in all variables, we can easily show as 
follows that the power of test 2A increases with p .  
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Let be a matrix such that 

where 

( 7 )  

Consider the case where the vector of changes in the true values 
of the variables 6 - is such that 

where 1 is a vector with elements * 1 and A is a positive number. 
We refer to A as the relative extent by which each variable 
changes. If the covariance matrices of the measurement errors 
are diagonal, then Eq. 8 implies that I /oiau is the same for all 
variables, where oEau are the diagonal elements of Qau. So long as 
the relative extents are the same, i.e., Eq. 8 is satisfied, the non- 
centrality parameter may be obtained from Eq. A24 to be 

T = Np(A) ’ /2  (9) 

which increases with p .  
We first note that the power of the composite test is deter- 

mined by test 2A (resp., test 2B) when Q, = Qz (resp., Q, highly 
different from (7’). whereas both test 2 A  and test 2B determine 
the power of the composite test when Q, is moderately different 
from Q2. When QI = Q2, the power oftest 2 A  can be obtained 
analytically as described in the Appendix for given values of a)’, 

p ,  N ,  and T .  Power curves for test 2 A  plotted against A for dif- 
ferent values o f p  are  shown in Figure 2. For any given value of A 
it is observed that the power increases with p. Due to the robust- 
ness of test 2A when the period sizes are equal (Ito and Schull, 
1964), these power curves are valid for test 2A even when Q1 is 
moderately different from $I2. The power of test 2B when Q1 # 
$Iz can be estimated only through simulation. Power curves for 
test 2B obtained through simulation are also shown in Figure 2 
for particular choices of el and Q2. We again observe that the 
power of test 2B increases with p for a given value of A. Thus for 
the case when all variables change by the same relative extent A, 

4 = 0.05 
N = 30 

1.0 7 

the power of the composite test increases with p ,  whatever the 
values of QI and Q2. This indicates that by grouping variables 
that change their states simultaneously, we may be able to 
increase the power of the test. 

A second question that may be important with regard to the 
effect of p is the following: Given a set of M variables, how 
should the variables be groupcd together and tested without dis- 
carding any variable? The two extreme possibilities are: 

1. Testing each variable independently 
2. ‘Testing all the variables together. 
It should be noted that in this case, the dimension of the 

group, p. and the number of groups formed, g (such that pg = 

M), both affect the performance of the composite test. This 
question is not addressed in our investigation, but is a possible 
direction for future research. 

Effect of N on power 
The value of N should be chosen greater than p ,  so that an 

estimate of the covariance matrix Qk can be obtained from the 
data in every period k. It can be observed from Eq. A24 that for 
any nonzero magnitude of change S in the true values of the vari- 
ables, the noncentrality parameter increases with N ,  which 
increases the power of test 2 A  or 2B. It can also be observed that 
the denominator degrees of freedom (defined by fA andf, in Eqs. 
A17 and A20, respectively) increase with N .  This decreases the 
test criteria of test 2A or test 2B, as may be verified by reference 
to their tabulated values, with resultant increase in their powers. 
Therefore the power of the composite test also increases 
with N .  

Application to Plant Data 
The steady state detection test was applied to plant data to 

examine the practical utility of the composite test. Plant data 
were obtained from an industrial plant a t  Beaumont, Texas, for 
the process represented by Figure 3 .  Measurements were made 
a t  1 min intervals for 20 variables over a period of 35 days. Fif- 
teen of these variables are flow variables, which are shown by 
double slashes in Figure 3; the remaining five variables are tem- 
perature variables, which are shown by single slashes. The 
recorded data, which contain more than one steady state, were 
used to evaluate the performance of the composite test. 

A preliminary analysis of the data was first conducted to test 
for the assumption of multivariate normality. We applied the 
modified Raleigh test recommended by Koziol (1983) to our 
data. We tested this assumption for a measurement vector of 
dimension p = 3, which is the maximum dimension subsequently 
used in our application. Twenty-four random samples, each con- 

B , = L  
Q2= 11 

.o .2L-- .20 .35 RELATIVE .so .65 CHANGE : .80 2Bl  .95 1.10 1 

Figure 2. Power as a function of A for different p .  

+ TEMPERATURE Q 
17 

16 

9 Ii 

Figure 3. Process graph. 

1412 September 1986 Vol. 32, No. 9 AICLE Journal 



1 0 4 : : : : : :  
0 2 4 6 8 1 0 1 2  

VARIABLE 
c 1  
A 2  
0 3  I 

VARIABLE 
c 1  
A 2  
0 3  

t : : : : : : : : : i  
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Figure 4. Plot of 15 min averages. 

sisting of 100 measurement vectors were tested. The results 
showed that in 14 out of the 24 cases the null hypothesis of mul- 
tivariate normality is not rejected for a level of significance less 
than or equal to 0.3. In the remaining 10 cases the null hypothe- 
sis is rejected even for a level of significance equal to 0.01. It is 
possible, however, that in these cases the hypothesis of multivar- 
iate normality is rejected because the data used are not obtained 
under steady state conditions, which is an assumption basic to 
the Raleigh test. Evidence is also available (Seber, 1984) that 
tests 2A and 2B are quite robust to nonnormality, particularly 

when the period sizes are equal. Based on the above results and 
considerations, we may reasonably assume multivariate normal- 
ity for our data. 

In order to examine the actual performance of the test a basis 
for comparison has to be chosen. A perception of steady state 
was obtained by plotting measurements of variables averaged 
over different time periods. The plots for variables I ,  2, and 3 are 
shown in Figures 4 to 6, where the time period for averaging is 
15 min, 4 h, and 1 day, respectively. For the convenience of dis- 
play a different scale was used for variable 2 in these figures. 

VARIABLE 

0 1  
A 2  
0 3  

1 5 4 : : : : : : : : : : : ; : :  : : ’  
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

DAY NUMBER 

Figure 5. Plot of four-hour averages. 
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Figure 6. Plot of one-day averages. 

The value of variable 2 shown in these figures is 18 times the 
actual flow rate. If a short time period is used in data averaging, 
the pattern of behavior of the variables is obscured by high- 
frequency noises. l n  the context of our application this situation 
is in evidence with time periods of 15 min or less. On the other 
hand, if a very long time period is used, all changes are obliter- 
ated by the averaging and no useful conclusions can be reached. 
In our case, time periods of eight days or more seem to fall into 
this category. In between these extremes and over a wide range 
of time periods, however, there is an unambiguous pattern of 
steady states recognizable by any reasonable observer. In our 
application we can conclude that variables I ,  2, and 3 are  steady 
for the first eight days, after which there is a transient period of 
six days. We can also conclude that variables 1 and 3 exhibit 
almost identical behavior. 

The performance of the test as given by the probability of 
Type I error and power was examined for different values of p ,  
N ,  and at. The following input specifications are necessary for 
this purpose: 

The time intervals over which the variables are  steady and 
nonsteady, respectively. 

A set of variables that behave similarly (change their states 
together). 

Table 1. Parameters Used in Applying Composite 
Test to Plant Data 

No. variables chosen 10 
Variables chosen 
Dimension of measurement 

Level of significance, 

Levels of significance, 

Period sizes 15,30, and 60 

1, 2, 3.4,  14, 15, 16, 17, 19, 20 

1, 2, and 3 vector p 

test I 0.05 

test 2A or 2B 0.10,0.05,0.01 

Ten variables that behave similarly were chosen by examin- 
ing their plots to form a pool from which subsets of variables are 
later selected. The first 184 h was specified as the interval of 
steady state. The specified length of the nonsteady state interval 
was 136 h, beginning 208 h from the starting day. The compos- 
ite test was applied to the selected variables over the specified 
time intervals, for different values of p, N ,  and at. Table 1 gives 
the values of the different parameters used for this application. 

In order to compare readily the results of applying the test for 
different values ofp,  N ,  and az, the results obtained for different 
subse:ts are pooled together and reported in terms of a proportion 
i, which is given by 

~ 

Total number of subsets rejected by the composite test 
Total number of subsets 

r == 

While the proportion S defined by Eq. 5 is an estimate of the 
performance characteristics of the composite test for one subset 
of variables, the proportion i used here is an average estimate 
over all subsets of the performance characteristics for chosen 
values ofp, N ,  and a2. It should be noted that when the variables 
are steady i gives an unbiased estimate of the probability of 
Type I error of the composite test. If the variables are not stea- 
dy, then i is the average estimate of the power of the test for a 
given choice of p .  N ,  and a2. The value of i was calculated sepa- 
rately for the two specified time intervals. On the basis of the 
specified time intervals these proportions represent estimates of 
the probability of Type I error and the average power of the test, 
respectively. 

Discussion of results 
The results are presented in Figures 7 and 8. In these figures 

the proportion of subsets rejected is plotted against the period 
size N ,  with p as a parametcr. Figure 7 corresponds to the time 
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Figure 7. Proportion of trials rejected when variables are 
steady. 

interval of steady state and therefore gives the variation of the 
estimate of probability of Type I error with N and p .  Figure 8 
gives the variation of the estimate of power with N and p .  The 
results are presented for a2 = 0.05. Similar results were obtained 
for a2 = 0.01 and a2 = 0.10 (Narasimhan, 1984), with the esti- 
mated probability of Type I error and power decreasing with a2 
as expected. 

From Figure 8 we observe that the power increases a s p  or N 
increases, which agrees with the theoretical conclusions reached 
for the effects of p and N on the power of the test in the earlier 
subsections “Effect of p on power” and “Effect of N on pow- 
er.” 

From Figure 7 we observe the following: 
The estimated probability of Type I error is much higher 

than the chosen value of a2. 
The estimated probability of Type I error increases with p 

and N .  
Due to our subjectivity in specifying the interval of steady 

state, the estimated probability of Type 1 error may be higher 
than a2. However, the second of these observations contradicts 
the earlier theoretical conclusion that the probability of Type 1 

(‘O 1 

.o I I I I I 
0 15 30 45 60 

P E R I O D  S I Z E  

Figure 8. Proportion of trials rejected when variables are 
unsteady. 

error is independent of p and N .  This apparent contradiction 
may be explained if over the time interval of steady state speci- 
fied, the variables are not truly steady but change by small 
extents that are detected by the test. Therefore, the proportion i. 
estimated for this time interval also represents an estimate of the 
power of the test, which increases with p and N .  

The hypotheses of test 2A and test 2B can be reformulated to 
allow small changes in the variables to go undetected. One 
approach for doing this is described and tested in the following 
section. 

Modified formulation of hypotheses 
Let 5 be the vector of changes in the true values from period k 

to k + 1. The hypotheses of test 2A and test 2B are reformulated 
as 

where goy is defined in Eq. 7. The original formulation of the 
hypotheses described by Eq. A13 in the appendix is a special 
case of the above formulation with A* equal to zero. The com- 
posite test is applied as before with the modification that the null 
hypothesis of test 2A or test 2B is rejected if the corresponding 
test statistic exceeds the a2 point of the corresponding noncen- 
tral T 2  distribution (with degrees of freedom p andf, or p and 
fB) and noncentrality parameter 7 = N P ( A * ) ~ / ~ .  The percent- 
age point of the noncentral T 2  distribution is obtained using Eq. 
A26. 

The reformulated hypotheses, Eq. 11, imply that if the 
weighted sum of squares of the changes in the true values of the 
variables represented by ($Iav)-’! is greater than P(A*)~,  then 
the state of the variables is deemed to have changed. In practical 
applications A* may be specified by the user based on the 
changes in the true values of the variables that can be tolerated, 
although this may require knowledge about the behavior of the 
process variables. 

Note that the threshold value on Y(QJ’6 is chosen directly 
proportional to p since it represents the total weighted sum of 
changes in p variables that can be tolerated and is therefore 
expected to increase with p .  The composite test was applied with 
the reformulated hypotheses for different values of A*. 

Figures 9 and 10 show the variation of the estimated probabil- 
ity of Type I error with N and p ,  respectively, for different val- 
ues of A*. Figure 9 shows that the estimated probability of Type 
I error becomes largely independent of N for A* greater than m. Moreover, as A* becomes greater than 1 .O the estimated 
probability of Type I error is nearly equal to a2. Figure 10 shows 
that the estimated probability of Type I error still depends 
slightly on p ,  although the extent to which it depends is reduced 
when A* is greater than m. Figures 11 and 12 show the varia- 
tion in the estimated power with N a n d  p ,  respectively, for dif- 
ferent values of A*. The estimated power decreases as A* 
increases. Thus there exists a trade-off between the probability 
of Type 1 error and power as  A* increases. 

Ideally we would like to choose a value of A* such that the 
following conditions are met: 

The actual probability of Type I error is independent of N 
and p ,  and is close to the chosen value of a2. 

The actual power of the test is high. 
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Figure 9. Proportion of subsets rejected when variables 
are steady, using reformulated hypothesis. 

A high value of A* meets the first condition but gives an unac- 
ceptably low power. A low value of A*, on the other hand, satis- 
fies the second condition at the expense of a high probability of 
Type I error. The exact choice of A* depends on the application. 
If it is more important not to miss a change of steady state than 
to mispredict a change when no change has actually taken place, 
then we would demand a higher power at  the expense of a higher 
probability of Type 1 error. In this case A* = seems to be a 
good choice. 

Closing Remarks 
To summarize, for the original formulation of the hypotheses 

(If, : a = 0 vs. H I  : 6 # 0) the power of the test may be increased 
by increasing p ,  provided all the variables change their states 
simultaneously, but the nature of the process may limit the num- 
ber of variables which can be grouped together. Another way to 
increase the power of the test is to increase N by either increas- 
ing the frequency of sampling or by choosing a longer time peri- 
od. However, the time period should not be chosen so long as to 
violate the assumption of steady state within each time period. 
The choice of a I  in the range 0.01-0.10, does not affect the prob- 
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Figure 10. Proportion of subsets rejected when variables 
are steady, using reformulated hypothesis. 
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Figure 11. Proportion of subsets rejected when variables 
are unsteady, using reformulated hypothesis. 

ability of Type I error or the power of the composite test. By 
increasing a2 the power can be increased but only a t  the expense 
of higher probability of Type 1 error. In practical applications, it 
may be necessary to adopt the reformulated hypotheses, Eq. 11. 
The choice of A* can be made with a view to make the probabil- 
ity of type I error almost independent of N and p .  

Thr: strategy for applying the composite test depends on how 
we expect the process variables to change their states. For quasi- 
steady state (QSS) process variables, which remain steady for 
long intervals of time and which change relatively quickly from 
one steady state to another, the composite test can be applied to 
pairs of consecutive time periods as in this study. A continuous 
process is normally operated under a steady state, and changes 
of steady state are deliberately imposed by changes of feedstock, 
desired product slate, and/or operating conditions. It is usually 
desirable to accomplish the changes in the shortest time possi- 
ble. For these reasons QSS processes are a very important, if not 
the dominant, class of processes. However, if we are interested in 
detecting slow drifts in variables, then we may apply the com- 
posite test to periods 1 and 2, 1 and 3, and so on until we detect 
for the first time a change in steady state, say for example, 
between periods 1 and k .  We may then continue applying the 
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Figure 12. Proportion of subsets rejected when variables 
are unsteady, using reformulated hypothesis. 
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test to periods k and k + 1, k and k + 2, and so on. Other strat- Appendix: The ComDosite Test . -  

The composite test consists of three separate tests applied to egies may also be considered. 
The method Proposed in this for detecting changes in 

steady State represents a preliminary effort in this area. It may 
sample statistics derived from two consecutive periods of time. 
The periods are denoted by subscripts 1 and 2. The formulae 

be possible to achieve these objectives through alternative meth- 
ods. The development of such methods is open to future 

are given for the of equal period sizes, 

research. 
Test 1: Test of sample covariance matrices 

This test (Anderson, 1957, pp. 247-256) is used to test 
whether the covariance matrices of two normal distributions are 
equal. In our case the hypotheses are formulated as 
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Notation H 0 : Q  = Q z  
HI : QI + $22 - Ak = N ~ 1 times the sample covariance matrix, Eq. A4 

d = difference of average values of measurements, Eq. A15 
- fi = square root of matrix (Q, + Q2), Q. 6 
f =  parameter, Eq. A7 

fA = denominator degrees of freedom for test 2A 
fB = denominator degrees of freedom for test 2B 
g = number of groups such that p g  = M 

k = subscript for the kth period 
M = total number of process variables measured 
n = N - l  

N = number of measurements in a period (period size) 

p = number of variables in a subset n = N - l  (A3) 

The test statistic is given by 

pn 10.5” 
= 2 I_ 1 4 0 . 5 n  

I = identity matrix 14, + & I n  

N R  = number of simulation trials rejected 
N7 = number of simulation trials performed 

Q(QJ = true measurement error covariance matrix 

lAkl denotes the determinant of d k ,  k = 1, 2 

Q, = covariance matrix, Eq. 7 N 
r = proportion, Eq. 10 A k  - = ( s k i  - z k ) ( s k i  - z k ) ’ ,  k = 1, 2 (A4) 
j. = proportion, Eq. 5 i -  1 

gk = sample covariance matrix 

wz = parameter, Eq. A9 
zt = vector of true values 
zk = average value of measurements 
tki = ith measurement vector in period k 
Z = quantity, Eq. A12 

1 = vector with elements - following equations. 

W = test statistic for test I ,  Eq. A2 - I N  
- N i- i  
XL = - c ?ki (A51 

- 
The null hypothesis is rejected if W Z S  W(a,)  where W(a,)  is the 
test criterion at  a level of significance aI. The value of W ( a I )  

- 

- 0 = vector with all elements having value 0 cannot be obtained exactly but may be approximated using the 
1 

Let W, be the random variable that has the same distribution 
Greek letters as W. Then 

aI = level of significance of test 1 
az = level of significance of test 2A or test 2B 

= probability of Type I1 error of test 1 
T = noncentrality parameter, Eq. A24 
u: = diagonal elements of Q 

u:i(di) = diagonal elements of QI (Qz) 
ufm = diagonal elements of Qm 

$ = vector of changes in the true values 
ai = change in true value for the ith variable 
A = relative change in each variable, Eq. 8 

A* = parameter, Eq. 11 
p = parameter, Eq. A8 

Other symbols 
FpJ = F distribution with degrees of freedom p andf 

FpLr = noncentral F distribution with degrees of freedom p,f, and 
noncentrality parameter T 

N ( .  , . .) = normal distribution with mean. and covariance matrix.. 
Prl.) = probability o f .  

T;J., = noncentral T 2  distribution with degrees of freedom p,f, and 
TiJ = T 2  distribution with degrees of freedomp and/ 

noncentrality parameter T 
x; = chi-squared distribution withfdegrees of freedom 
1.1 - determinant of matrix . - = “is distributed as” 

where 

where 

p = 1 - (2p2 + 3p - 1)/[4nO, + I ) ]  (A81 

We want the level of significance to be a, for this test. This 
means that 

Since p is positive 
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where 

z = -2p log W(al) (A121 

We can iteratively obtain Z for a given value of aI using Eqs. A6 
and A l l .  

Test 2A: Test of sample means for equal but unknown 
covariance matrices 

The Hotelling T 2  test (Anderson, 1957, pp. 101-1 15) is used 
to test whether the means of two normal distributions are equal 
given that their covariance matrices are equal but unknown. The 
hypotheses in our case are 

HO 51 = 5 2  

HI :El f 52 (‘413) 

The test statistic is given by 

T;J1 = 0.5Nd’S - _  -Id - (‘414) 

where 

and n is defined in Eq. A3. 
The null hypothesis is rejected if 

TiJA is distributed under the null  hypothesis as  pfA/ 
(f, - p + 1) times an F random variable with p and fA - p + 1 
degrees of freedom. Therefore TiJA(a2) ,  the upper a2 point of 
TzJA under the null hypothesis, is given by 

This is used to obtain TifA(a2)  for a chosen level of significance 
a2. 

Test 2B: Test of sample means for unequal and unknown 
covariance matrices 

This test, given by Yao (1 965), is similar to the T 2  test and is 
used when the covariance matrices of the two samples are une- 
qual. The alternative hypotheses are still given by Eq. A13. The 
test statistic is computed according to Eq. A14 with fA replaced 
by fB, which is the approximate degrees of freedom given by 

where 

The test is now applied as in the case of test 2A. This test is 
approximate in that its probability of Type I error is approxi- 
mately equal to a2. 

Power of test 2A 
The power of test 2A to detect a given change in the true val- 

ues of the variables is obtained as follows. 
Let Q1 = Q2 = Q be the covariance matrix in each period. Let 

the vector of differences 4 in the true values in the two periods be 
given by 

6 = x I  - - x 2  W 3 )  

The noncentrality parameter is defined as 

7 = N6’(QI + Qz)-I6 = 0.5N6’(Q)-’S (A24) 

Under HI, T Z  is distributed as pfA/cfA - p + 1) times a noncen- 
tral I: variable with noncentrality parameter (Anderson, 1954, 
pp. 114). Let this be denoted by TiJAII. If the percentage points 
of the noncentral Fdistribution are available (Tiku, 1966). then 
the power of test 2A for any given value of a2. p. N, and T is given 
by 

prlT;J“,, 2 T;J“(az)I (A251 

where 

The righthand side being the noncentral F distribution. This 
procedure was used to obtain the power for test 2A in Figure 2. 
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